第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17% 您所在的位置:网站首页 mirai 易语言 第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17%

第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17%

2023-05-15 18:56| 来源: 网络整理| 查看: 265

作者 | 黄世宇,第四范式强化学习研究员

策划 | 刘燕  

OpenRL 是由第四范式强化学习团队开发的基于 PyTorch 的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL 基于 PyTorch 进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL 支持的特性包括:

●简单易用且支持单智能体、多智能体训练的通用接口

●支持自然语言任务(如对话任务)的强化学习训练

●支持从 Hugging Face 上导入模型和数据

●支持 LSTM,GRU,Transformer 等模型

●支持多种训练加速,例如:自动混合精度训练,半精度策略网络收集数据等

●支持用户自定义训练模型、奖励模型、训练数据以及环境

●支持 gymnasium 环境

●支持字典观测空间

●支持 wandb,tensorboardX 等主流训练可视化工具

●支持环境的串行和并行训练,同时保证两种模式下的训练效果一致

●中英文文档

●提供单元测试和代码覆盖测试

●符合 Black Code Style 和类型检查

目前,OpenRL 已经在 GitHub 开源:https://github.com/OpenRL-Lab/openrl

OpenRL 初体验

OpenRL 目前可以通过 pip 进行安装:

也可以通过 conda 安装:

OpenRL 为强化学习入门用户提供了简单易用的接口, 下面是一个使用 PPO 算法训练 CartPole 环境的例子:

使用 OpenRL 训练智能体只需要简单的四步:创建环境 => 初始化模型 => 初始化智能体 => 开始训练!

在普通笔记本电脑上执行以上代码,只需要几秒钟,便可以完成该智能体的训练:

此外,对于多智能体、自然语言等任务的训练,OpenRL 也提供了同样简单易用的接口。例如,对于多智能体任务中的 MPE 环境,OpenRL 也只需要调用几行代码便可以完成训练:

下图展示了通过 OpenRL 训练前后智能体的表现:

加载配置文件

此外,OpenRL 还同时支持从命令行和配置文件对训练参数进行修改。比如,用户可以通过执行 python train_ppo.py --lr 5e-4 来快速修改训练时候的学习率。

当配置参数非常多的时候,OpenRL 还支持用户编写自己的配置文件来修改训练参数。例如,用户可以自行创建以下配置文件 (mpe_ppo.yaml),并修改其中的参数:

最后,用户只需要在执行程序的时候指定该配置文件即可:

训练与测试可视化

此外,通过 OpenRL,用户还可以方便地使用 wandb 来可视化训练过程:

OpenRL 还提供了各种环境可视化的接口,方便用户对并行环境进行可视化。用户可以在创建并行环境的时候设置环境的渲染模式为"group_human",便可以同时对多个并行环境进行可视化:

此外,用户还可以通过引入 GIFWrapper 来把环境运行过程保存为 gif 动画:

智能体的保存和加载

OpenRL 提供 agent.save() 和 agent.load() 接口来保存和加载训练好的智能体,并通过 agent.act() 接口来获取测试时的智能体动作:

执行该测试代码,便可以在同级目录下找到保存好的环境运行动画文件 (test_simple_spread.gif):

训练自然语言对话任务

最近的研究表明,强化学习也可以用于训练语言模型, 并且能显著提升模型的性能。目前,OpenRL 已经支持自然语言对话任务的强化学习训练。OpenRL 通过模块化设计,支持用户 加载自己的数据集 , 自定义训练模型, 自定义奖励模型, 自定义 wandb 信息输出 以及 一键开启混合精度训练 等。

对于对话任务训练,OpenRL 提供了同样简单易用的训练接口:

可以看出,OpenRL 训练对话任务和其他强化学习任务一样,都是通过创建交互环境的方式进行训练。

加载自定义数据集

训练对话任务,需要对话数据集。这里我们可以使用 Hugging Face 上的公开数据集(用户可以替换成自己的数据集)。加载数据集,只需要在配置文件中传入数据集的名称或者路径即可:

上述配置文件中的 data_path 可以设置为 Hugging Face 数据集名称 或者 本地数据集路径。此外,环境参数中的 tokenizer_path 用于指定加载文字编码器的 Hugging Face 名称 或者 本地路径。

自定义训练模型

在 OpenRL 中,我们可以使用 Hugging Face 上的模型来进行训练。为了加载 Hugging Face 上的模型,我们首先需要在配置文件 nlp_ppo.yaml 中添加以下内容:

然后在 train_ppo.py 中添加以下代码:

通过以上简单几行的修改,用户便可以使用 Hugging Face 上的预训练模型进行训练。如果用户希望分别自定义策略网络和价值网络,可以写好 CustomPolicyNetwork 以及 CustomValueNetwork 后通过以下方式从外部传入训练网络:

自定义奖励模型

通常,自然语言任务的数据集中并不包含奖励信息。因此,如果需要使用强化学习来训练自然语言任务,就需要使用额外的奖励模型来生成奖励。在该对话任务中,我们可以使用一个复合的奖励模型,它包含以下三个部分:

●意图奖励:即当智能体生成的语句和期望的意图接近时,智能体便可以获得更高的奖励。

●METEOR指标奖励:METEOR 是一个用于评估文本生成质量的指标,它可以用来衡量生成的语句和期望的语句的相似程度。我们把这个指标作为奖励反馈给智能体,以达到优化生成的语句的效果。

●KL 散度奖励:该奖励用来限制智能体生成的文本偏离预训练模型的程度,防止出现 reward hacking 的问题。

我们最终的奖励为以上三个奖励的加权和,其中 KL 散度奖励 的系数是随着 KL 散度的大小动态变化的。想在 OpenRL 中使用该奖励模型,用户无需修改训练代码,只需要在 nlp_ppo.yaml 文件中添加 reward_class 参数即可:

OpenRL 支持用户使用自定义的奖励模型。首先,用户需要编写自定义奖励模型 (需要继承 BaseReward 类)。接着,用户需要注册自定义的奖励模型,即在 train_ppo.py 添加以下代码:

最后,用户只需要在配置文件中填写自定义的奖励模型即可:

自定义训练过程信息输出

OpenRL 还支持用户自定义 wandb 和 tensorboard 的输出内容。例如,在该任务的训练过程中,我们还需要输出各种类型奖励的信息和 KL 散度系数的信息, 用户可以在 nlp_ppo.yaml 文件中加入 vec_info_class 参数来实现:

修改完配置文件后,在 train_ppo.py 文件中启用 wandb:

然后执行 python train_ppo.py –config nlp_ppo.yaml,过一会儿,便可以在 wandb 中看到如下的输出:

从上图可以看到,wandb 输出了各种类型奖励的信息和 KL 散度系数的信息。

如果用户还需要输出其他信息,还可以参考 NLPVecInfo 类 和 VecInfo 类来实现自己的 CustomVecInfo 类。然后,需要在 train_ppo.py 中注册自定义的 CustomVecInfo 类:

最后,只需要在 nlp_ppo.yaml 中填写 CustomVecInfo 类即可启用:

使用混合精度训练加速

OpenRL 还提供了一键开启混合精度训练的功能。用户只需要在配置文件中加入以下参数即可:

对比评测

下表格展示了使用 OpenRL 训练该对话任务的结果。结果显示使用强化学习训练后,模型各项指标皆有所提升。另外,从下表可以看出,相较于 RL4LMs , OpenRL 的训练速度更快(在同样 3090 显卡的机器上,速度提升 17% ),最终的性能指标也更好:

最后,对于训练好的智能体,用户可以方便地通过 agent.chat() 接口进行对话:

执行 python chat.py ,便可以和训练好的智能体进行对话了:

总结

OpenRL 框架经过了 OpenRL-Lab 的多次迭代并应用于学术研究和 AI 竞赛,目前已经成为了一个较为成熟的强化学习框架。OpenRL-Lab 团队将持续维护和更新 OpenRL,欢迎大家加入我们的开源社区,一起为强化学习的发展做出贡献。更多关于 OpenRL 的信息,可以参考:

●OpenRL 官方仓库:https://github.com/OpenRL-Lab/openrl/

●OpenRL 中文文档:https://openrl-docs.readthedocs.io/zh/latest/

致谢

OpenRL 框架的开发吸取了其他强化学习框架的优点:

●Stable-baselines3: https://github.com/DLR-RM/stable-baselines3

●pytorch-a2c-ppo-acktr-gail: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

●MAPPO: https://github.com/marlbenchmark/on-policy

●Gymnasium: https://github.com/Farama-Foundation/Gymnasium

●DI-engine: https://github.com/opendilab/DI-engine/

●Tianshou: https://github.com/thu-ml/tianshou

●RL4LMs: https://github.com/allenai/RL4LMs

未来工作

目前,OpenRL 还处于持续开发和建设阶段,未来 OpenRL 将会开源更多功能:

●支持智能体自博弈训练

●加入离线强化学习、模范学习、逆强化学习算法

●加入更多强化学习环境和算法

●集成 Deepspeed 等加速框架

●支持多机分布式训练

OpenRL Lab 团队

OpenRL 框架是由 OpenRL Lab 团队开发,该团队是第四范式公司旗下的强化学习研究团队。第四范式长期致力于强化学习的研发和工业应用。为了促进强化学习的产学研一体化,第四范式成立了 OpenRL Lab 研究团队,目标是先进技术开源和人工智能前沿探索。成立不到一年,OpenRL Lab 团队已经在 AAMAS 发表过三篇论文,参加谷歌足球游戏 11 vs 11 比赛并获得第三的成绩。团队提出的 TiZero 智能体,实现了首个从零开始,通过课程学习、分布式强化学习、自博弈等技术完成谷歌足球全场游戏智能体的训练:

截止 2022 年 10 月 28 日,Tizero 在及第评测平台上排名第一:

作者介绍

黄世宇,第四范式强化学习研究员。博士毕业于清华大学计算机系,博士导师是朱军和陈挺教授,本科期间在 CMU 交换,导师为 Deva Ramanan 教授。主要研究方向为强化学习,多智能体强化学习,分布式强化学习。曾在腾讯 AI Lab、华为诺亚、商汤、RealAI 工作。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有